链表和数组
读取
需要随机地读取元素时,数组的效率很高,因为可迅速找到数组的任何元素。在链表中,元素并非靠在一起的,你无法迅速计算出第五个元素的内存地址,而必须先访问第一个元素以获取第二个元素的地址,再访问第二个元素以获取第三个元素的地址,以此类推,直到访问第五个元素。
插入
需要在中间插入元素时,数组和链表哪个更好呢?使用链表时,插入元素很简单,只需修改它前面的那个元素指向的地址,而使用数组时,则必须将后面的元素都向后移。如果没有足够的空间,可能还得将整个数组复制到其他地方!因此,当需要在中间插入元素时,链表是更好的选择。
删除
如果你要删除元素呢?链表也是更好的选择,因为只需修改前一个元素指向的地址即可。而使用数组时,删除元素后,必须将后面的元素都向前移。
不同于插入,删除元素总能成功。如果内存中没有足够的空间,插入操作可能失败,但在任何情况下都能够将元素删除
三者运行时间
链表擅长插入和删除,而数组擅长随机访问1
2
3
4
5
6
7 数组 链表
读取 O(1) O(n)
插入 O(n) O(1)
删除 O(n) O(1)
需要指出的是,仅当能够立即访问要删除的元素时,删除操作的运行时间才为O(1)。通常我们都记录了链表的第一个元素和最后一个元素,因此删除这些元素时运行时间为O(1)
数组和链表哪个用得更多呢?显然要看情况。但数组用得很多,因为它支持随机访问。有两种访问方式: 随机访问和顺序访问。顺序访问意味着从第一个元素开始逐个地读取元素。链表只能顺序访问:要读取链表的第十个元素,得先读取前九个元素,并沿链接找到第十个元素。随机访问意味着可直接跳到第十个元素。本书经常说数组的读取速度更快,这是因为它们支持随机访问。很多情况都要求能够随机访问,因此数组用得很多
选择排序法
假设你的计算机存储了很多乐曲。对于每个乐队,你都记录了其作品被播放的次数,你要将这个列表按播放次数从多到少的顺序排列,从而将你喜欢的乐队排序。该如何做呢?一种办法是遍历这个列表,找出作品播放次数最多的乐队,并将该乐队添加到一个新列表中。再次这样做,找出播放次数第二多的乐队。直到最后,你将得到一个有序列表。O(n)时间意味着查看列表中的每个元素一次。例如,对乐队列表进行简单查找时,意味着每个乐队都要查看一次,要找出播放次数最多的乐队,必须检查列表中的每个元素。正如你刚才看到的,这需要的时间为O(n)。因此对于这种时间为O(n)的操作,你需要执行n次,需要的总时间为 O(n × n),即O(n2)
为什么是O(n2)
随着排序的进行,每次需要检查的元素数在逐渐减少,最后一次需要检查的元素都只有一个。既然如此,运行时间怎么还是O(n2)呢?
并非每次都需要检查n个元素。第一次需要检查n个元素,但随后检查的元素数依次为n - 1, n – 2, …, 2和1。平均每次检查的元素数为1/2 × n, 因此运行时间为O(n × 1/2 × n)。但大O表示法省略诸如1/2这样的常数,因此简单地写作O(n × n)或O(n2)
总结
1 | 计算机内存犹如一大堆抽屉。 |