简单
分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1,输入: g = [1,2,3], s = [1,1],输出: 1 解释:你有三个孩子和两块小饼干,3 个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是 1,你只能让胃口值是 1 的孩子满足。所以你应该输出 1。
为了满足更多的小孩,就不要造成饼干尺寸的浪费。大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。
这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。
可以尝试使用贪心策略,先将饼干数组和小孩数组排序。然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。
先遍历胃口,后遍历的饼干。如果是先遍历饼干,那么可能会出现饼干比胃口小,而满足不了其他小胃口的情况。
1 | # 大饼干优先 |
1 | # 小饼干优先 |
K 次取反后最大化的数组和
给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)以这种方式修改数组后,返回数组可能的最大和。
示例,输入:A = [4,2,3], K = 1,输出:5,解释:选择索引 (1,) ,然后 A 变为 [4,-2,3]。
- 贪心的思路,局部最优:让绝对值大的负数变为正数,当前数值达到最大,整体最优:整个数组和达到最大。
- 第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
- 第二步:从前向后遍历,遇到负数将其变为正数,同时K–
- 第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完
- 第四步:求和
1 | class Solution: |
柠檬水找零
在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。注意,一开始你手头没有任何零钱。如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
输入:[5,5,5,10,20],输出:true,解释:
前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。
第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。
第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。
由于所有客户都得到了正确的找零,所以我们输出 true。
只需要维护三种金额的数量,5,10和20。有如下三种情况:
- 情况一:账单是5,直接收下。
- 情况二:账单是10,消耗一个5,增加一个10
- 情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5
账单是20的情况,为什么要优先消耗一个10和一个5呢?因为美元10只能给账单20找零,而美元5可以给账单10和账单20找零,美元5更万能!
- 所以局部最优:遇到账单20,优先消耗美元10,完成本次找零。全局最优:完成全部账单的找零。
1 | class Solution: |
中等-序列问题
摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
示例 1,输入: [1,7,4,9,2,5],输出: 6,解释: 整个序列均为摆动序列。
示例 2,输入: [1,17,5,10,13,15,10,5,16,8],输出: 7,解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)
prediff =(nums[i] - nums[i-1]), curdiff =(nums[i+1] - nums[i])
需要考虑三种情况
情况一:上下坡中有平坡
它的摇摆序列长度是多少呢? 其实是长度是 3,也就是我们在删除的时候 要不删除左面的三个 2,要不就删除右边的三个 2。这种情况下,可以删除左边的三个2,也可以删除右边的三个2。所以我们记录峰值的条件应该是:
(preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)
情况二:数组首尾两端
题目中说了,如果只有两个不同的元素,那摆动序列也是 2。因为我们在计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i])的时候,至少需要三个数字才能计算,而数组只有两个数字。这里我们可以写死,就是 如果只有两个元素,且元素不同,那么结果为 2。
那么不写死的话,如何和我们的判断规则结合在一起呢?可以假设,数组最前面还有一个数字,那这个数字应该是什么呢?之前我们在 讨论 情况一:相同数字连续 的时候, prediff = 0 ,curdiff < 0 或者 >0 也记为波谷。那么为了规则统一,针对序列[2,5],可以假设为[2,2,5],这样它就有坡度了即 preDiff = 0结果为 2。
针对以上情形,result 初始为 1(默认最右面有一个峰值),此时 curDiff > 0 && preDiff <= 0,那么 result++(计算了左面的峰值),最后得到的 result 就是 2(峰值个数为 2 即摆动序列长度为 2)。所以将 result 初始化为 1,这是为了解决只有两个元素的情况。
情况三:单调坡度有平坡
在版本一中,我们忽略了一种情况,即 如果在一个单调坡度上有平坡,例如[1,2,2,2,3,4],如图
版本一的代码在三个地方记录峰值,但其实结果因为是 2,因为 单调中的平坡 不能算峰值(即摆动)。之所以版本一会出问题,是因为我们实时更新了 prediff。那么我们应该什么时候更新 prediff 呢?我们只需要在 这个坡度 摆动变化的时候,更新 prediff 就行,这样 prediff 在 单调区间有平坡的时候 就不会发生变化,造成我们的误判。
本题异常情况的本质,就是要考虑平坡, 平坡分两种,一个是 上下中间有平坡,一个是单调有平坡
1 | class Solution: |
1 | class Solution: |
单调递增的数字
给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)
示例 1,输入: N = 10,输出: 9
示例 2,输入: N = 1234,输出: 1234
示例 3,输入: N = 332,输出: 299
- 例如 98,一旦出现 strNum[i - 1] > strNum[i] 的情况(非单调递增),首先想让 strNum[i - 1]–,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。
- 以 332 举例,从后向前遍历332的数值变化为:332 -> 329 -> 299
贪心解法
1 | class Solution: |
暴力解法
1 | class Solution: |
checkNum
方法接收一个整数 num
,它的作用是检查 num
的每个数字是否按照递增的顺序排列。它通过不断地取出 num
的个位数字,并与一个变量 max_digit
比较,来判断当前数字是否小于等于之前遇到的最大数字。如果满足条件,则更新 max_digit
为当前数字,否则返回 False
。最后,如果所有的数字都满足条件,即整个 num
是递增的,那么返回 True
。
中等-股票问题
买卖股票最佳时机II
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1,输入: [7,1,5,3,6,4],输出:7,解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2,输入: [1,2,3,4,5],输出: 4,解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
这道题目可能我们只会想,选一个低的买入,再选个高的卖,再选一个低的买入…..循环反复。如果想到其实最终利润是可以分解的,那么本题就很容易了
假如第 0 天买入,第 3 天卖出,那么利润为:prices[3] - prices[0]。相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。此时就是把利润分解为每天为单位的维度,而不是从 0 天到第 3 天整体去考虑
- 从图中可以发现,其实我们需要收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间
- 那么只收集正利润就是贪心所贪的地方!局部最优:收集每天的正利润,全局最优:求得最大利润。
1 | class Solution: |
有难度-区间问题
跳跃游戏
给定一个非负整数数组,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1,输入: [2,3,1,1,4],输出: true,解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。
示例 2,输入: [3,2,1,0,4],输出: false,解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
- 当前位置元素如果是 3,我究竟是跳一步呢,还是两步呢,还是三步呢,究竟跳几步才是最优呢?其实跳几步无所谓,关键在于可跳的覆盖范围。
- 不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。这个范围内,别管是怎么跳的,反正一定可以跳过来。
- 那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!
- 每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
- i 每次移动只能在 cover 的范围内移动,每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。而 cover 每次只取 max(该元素数值补充后的范围, cover 本身范围)。如果 cover 大于等于了终点下标,直接 return true 就可以了
1 | class Solution: |
跳跃游戏II
给定一个非负整数数组,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。你的目标是使用最少的跳跃次数到达数组的最后一个位置。
示例,输入: [2,3,1,1,4],输出: 2,解释: 跳到最后一个位置的最小跳跃数是 2。从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。说明: 假设你总是可以到达数组的最后一个位置。
- 本题求解的是最少的跳跃次数,上题求解的是判断你是否能够到达最后一个位置
- 本题要计算最少步数,那么就要想清楚什么时候步数才一定要加一
- 贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最少步数。
- 不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最少步数
- 所以这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖
1 | class Solution: |
用最少数量的箭引爆气球
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
示例 1,输入:points = [[10,16],[2,8],[1,6],[7,12]],输出:2,解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球
示例 2,输入:points = [[1,2],[3,4],[5,6],[7,8]],输出:4
- 局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。
- 为了让气球尽可能的重叠,需要对数组进行排序。那么按照气球起始位置排序,还是按照气球终止位置排序呢?其实都可以!只不过对应的遍历顺序不同,我就按照气球的起始位置排序了。既然按照起始位置排序,那么就从前向后遍历气球数组,靠左尽可能让气球重复。
- 如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭
1 | class Solution: |
无重叠区间
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意: 可以认为区间的终点总是大于它的起点。 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例 1,输入: [ [1,2], [2,3], [3,4], [1,3] ],输出: 1,解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2,输入: [ [1,2], [1,2], [1,2] ],输出: 2,解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3,输入: [ [1,2], [2,3] ],输出: 0,解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
- 这里也需要排序,是按照右边界排序,还是按照左边界排序呢?其实都可以。主要就是为了让区间尽可能的重叠。
- 下面图片按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了
区间,1,2,3,4,5,6都按照右边界排好序。当确定区间 1 和 区间2 重叠后,如何确定是否与 区间3 也重贴呢?就是取 区间1 和 区间2 右边界的最小值,因为这个最小值之前的部分一定是 区间1 和区间2 的重合部分,如果这个最小值也触达到区间3,那么说明 区间 1,2,3都是重合的。接下来就是找大于区间1结束位置的区间,是从区间4开始。那有同学问了为什么不从区间5开始?别忘了已经是按照右边界排序的了。区间4结束之后,再找到区间6,所以一共记录非交叉区间的个数是三个。总共区间个数为6,减去非交叉区间的个数3。移除区间的最小数量就是3。
1 | """ |
划分字母区间
字符串 S 由小写字母组成。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。返回一个表示每个字符串片段的长度的列表。
示例,输入:S = “ababcbacadefegdehijhklij”,输出:[9,7,8] 解释: 划分结果为 “ababcbaca”, “defegde”, “hijhklij”。 每个字母最多出现在一个片段中。 像 “ababcbacadefegde”, “hijhklij” 的划分是错误的,因为划分的片段数较少。提示,S的长度在[1, 500]之间。S只包含小写字母 ‘a’ 到 ‘z’ 。
- 在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。
- 可以分为如下两步:
- 统计每一个字符最后出现的位置
- 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点
1 | class Solution: |
合并区间
给出一个区间的集合,请合并所有重叠的区间。
示例 1,输入: intervals = [[1,3],[2,6],[8,10],[15,18]],输出: [[1,6],[8,10],[15,18]],解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2,输入: intervals = [[1,4],[4,5]],输出: [[1,5]],解释: 区间 [1,4] 和 [4,5] 可被视为重叠区间。
- 先排序,让所有的相邻区间尽可能的重叠在一起,按左边界,或者右边界排序都可以,处理逻辑稍有不同。按照左边界从小到大排序之后,如果
intervals[i][0] <= intervals[i - 1][1]
即 intervals[i] 的左边界 <= intervals[i - 1] 的右边界,则一定有重叠。(本题相邻区间也算重贴,所以是<=)
- 知道如何判断重复之后,剩下的就是合并了,如何去模拟合并区间呢?其实就是用合并区间后左边界和右边界,作为一个新的区间,加入到result数组里就可以了。如果没有合并就把原区间加入到 result 数组
1 | class Solution: |
有难度-其余问题
最大子序和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例,输入: [-2,1,-3,4,-1,2,1,-5,4],输出: 6,解释: 连续子数组 [4,-1,2,1] 的和最大,为 6
- 如果 -2 1 在一起,计算起点的时候,一定是从 1 开始计算,因为负数只会拉低总和,这就是贪心贪的地方
- 局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。全局最优:选取最大“连续和”。注意这里不是遇到负数就立刻丢弃,而是连续和为负数的时候,才从下一个元素重新计算。
- 局部最优的情况下,并记录最大的“连续和”,可以推出全局最优。
- 从代码角度上来讲:遍历 nums,从头开始用 count 累积,如果 count 一旦加上 nums[i]变为负数,那么就应该从 nums[i+1]开始从 0 累积 count 了,因为已经变为负数的 count,只会拖累总和
1 | class Solution: |
加油站
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
- 如果题目有解,该答案即为唯一答案。
- 输入数组均为非空数组,且长度相同。
- 输入数组中的元素均为非负数。
示例 1,输入,gas = [1,2,3,4,5],cost = [3,4,5,1,2]
输出: 3 解释:
- 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
- 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
- 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
- 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
- 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
- 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
- 因此,3 可为起始索引。
方法1:
直接从全局进行贪心选择,情况如下:
- 情况一,如果gas的总和小于cost总和,那么无论从哪里出发,一定是跑不了一圈的
- 情况二,rest[i] = gas[i]-cost[i] 为一天剩下的油,i从0开始计算累加到最后一站,如果累加没有出现负数,说明从0出发,油就没有断过,那么0就是起点。
- 情况三,如果累加的最小值是负数,汽车就要从非0节点出发,从后向前,看哪个节点能把这个负数填平,能把这个负数填平的节点就是出发节点。
方法2:
- 首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的
- 每个加油站的剩余量rest[i]为gas[i] - cost[i]。i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。
- 局部最优:当前累加rest[i]的和curSum一旦小于0,起始位置至少要是i+1,因为从i之前开始一定不行。全局最优:找到可以跑一圈的起始位置
方法1:
1 | class Solution: |
方法2:
1 | class Solution: |
监控二叉树
给定一个二叉树,我们在树的节点上安装摄像头。节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。计算监控树的所有节点所需的最小摄像头数量。
输入:[0,0,null,0,0],输出:1,解释:如图所示,一台摄像头足以监控所有节点
输入:[0,0,null,0,null,0,null,null,0],输出:2,解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。
- 我们发现题目示例中的摄像头都没有放在叶子节点上!
- 摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。
- 为什么不从头结点开始看起呢,为啥要从叶子节点看呢?因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。
- 所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!
此时这道题目还有两个难点,1. 二叉树的遍历,2. 如何隔两个节点放一个摄像头
- 在二叉树中如何从低向上推导呢?可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。
- 先来看看每个节点可能有几种状态,0:该节点无覆盖,1:本节点有摄像头,2:本节点有覆盖
因为在遍历树的过程中,就会遇到空节点,那么问题来了,空节点究竟是哪一种状态呢? 空节点表示无覆盖? 表示有摄像头?还是有覆盖呢?为了让摄像头数量最少,我们要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了
看单层逻辑处理。主要有如下四类情况:
情况1:左右节点都有覆盖。左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了
情况2:左右节点至少有一个无覆盖的情况,父节点就应该放摄像头
情况3:左右节点至少有一个有摄像头,那么其父节点就应该是2(覆盖的状态)
情况4:头结点没有覆盖,以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,所以递归结束之后,还要判断根节点,如果没有覆盖,result++
1 | class Solution: |